东莞市梵尔龙电源科技有限公司
铁心直径的选择 铁心直径的大小,直接影响材料的用量,变压器的体积及性能等经济指标。故选择经济合理的铁心直径是变压器设计的重要一环。硅钢片重量和空载损耗随铁心直径增大而增大,线圈导线重量和负载损耗随时铁心直径增大而减小。合理的铁心直径就是硅钢片和导线材料的用量比例适当,达到经济的效果,铁心直径的大小与采用的硅钢片性能和导线材料直接有关,根据关系式的推导,铁心直径D与变压器容量P的四分之一次方成正比的关系,但因为变压器分单相、三相、双绕组、自耦等等,同样容量但消耗材料不同。一般将材料消耗折算成物理容量进行计算,为了计算方便,均以每柱的物理容量Pa为其础,按下式求出铁心直径D。由于使用了铝线材料,依据经验公式,D=58~62=60×=168mm 如若使用圆形截面,其截面约为198cm2。由于该设计使用矩形面积为=160×135x0.91=198cm2(0.91为叠片系数),所以长×宽=160×135mm;净面积为198cm2铁心采用DQ147-35A优制钢片。
输入电压不能超过额定电压的原因变压器中主磁通和激磁电流的关系称为铁心的磁化曲线,它是一条具有饱和特性的非线性曲线.当主磁通小于额定电压时对应的主磁通时,磁化曲线近似为线形;超过此值后,主磁通就逐渐趋向饱和.此时,如果再增加磁通,即增加U1,则电流就会急剧增加,这样变压器就会因过热而马上烧毁.因此,在使用变压器时,必须注意变压器的额定电压和电源电压要一致.
线圈匝数的计算: a. 每匝电压et的确定: 按电磁感应定律得:E1=4.44×f×N1×Bm×Ae×10-5 其中E1近似为输入电压, N1为一次卷线卷数, Bm磁通密度(千高斯) Ae铁心有效截面积(cm2) F频率50Hz b. 每匝电压,初选取每匝电压,已知铁心截面硅钢片牌号,即可实选et 磁通密度为较低些好,取15-16.5千高斯,现暂取为16.0kGauss c. (伏/匝) d. 低压线圈匝数的确定,示得每匝电压et和磁密Bm W2=400/1.732/7.04=33(匝)(取整数) 由于圈数是整数,所以须重新反算每匝电压和磁通密度,求得新值如下: 2.9 高压线圈匝数的确定(由于大型变压器,可近似忽略高低压内阻值) W2=400/7.0=57(匝)
线圈线径及幅向及轴向尺寸: 因为铝线电流密度为1.5~2.3A/mm2。采用Dyn11结线还有诸多好处,如我国新标准《低压配电装置及线路设计规范》提出:TN系统采用我国标准产品熔断器作配电线路接地故障保护时应符合附表所列单相接地短路电流Id比熔体额定电流In的小倍数。所谓TN接地系统是指,配电变压器中性点直接接地(用T表示),系统内外露可导电部分经中性线N或另设的保护线PE连接到变压器接地(用N表示),近似于过去“保护接零”。列出两种时限,5S对应于固定式电气设备和线路,0.4S对应于移动式和手持式电气设备及线路(插座)。熔体额定电流In按回路工作电流或尖峰电流选择后,要校验ID/In的小倍数是否满足。着眼于人身,还要校验接触电压Ujc,附表切断时间5S要求Ujc≤50V,切断时间0.4S要求Ujc≤90V。一般Yyno结线配电变压器的零序阻抗达正序阻抗的8~10倍,单相短路电流相对较小,以致故障点位于电网末端、保护线PE截面较小、用电设备功率较大或电动机要考虑尖峰电流所选熔体额定电流较大等情况下常常不能满足附表要求的ID/In小倍数。
变压器原副边绕组要套在同一铁心柱的原因。把原副边绕组套在同一铁心柱上时,由于原副边绕组紧挨在一起(间隙实际上很小,它等于原副边绕组之间绝缘纸的厚度,部分漏磁通在空气中的路径大受限制,因此漏磁通较小.而副边绕组没有套在原边绕组上时,漏磁通在空气中可以自由经过,无空间限制,因此在同样的磁势下漏磁通就大.将原副边绕组套在一起的合理之处即在于漏抗压降小,对变压器运行有利.因为变压器副边电压是随副边电流变化而变化的,减小原副边的漏阻抗就可以减小电压变化.为了使变压器副边电压比较稳定,总是设法减小变压器的漏抗.如果把变压器的原副边绕组分开放置,则漏抗将大大增加,以致负载变动时副边电压变化很大,这样的变压器就不能满足使用上的要求.电源变压器简易设计(五)变压器的铭牌与使用。使用变压器首先要弄清并严格遵守制造厂提供的铭牌数据,以避免因使用不当而不能充分利用,甚至损坏.