PP S1023 台湾台化 短纤维 纤维级
用途:短纤维
加工方法:暂无
参数:熔流率(熔体流动速率):23.0G/10 MIN 密度:0.9无 拉伸屈服强度:360.0KG/CM2 断裂伸长率:0.0% 弯曲模量:15000.0KG/CM2
PP特性
聚丙烯简称PP,是一种无色、无臭、无毒、半透明固体物质。 [4] 聚丙烯是一种性能优良的热塑性合成树脂,为无色半透明的热塑性轻质通用塑料。具有耐化学性、耐热性、电绝缘性、高强度机械性能和良好的高耐磨加工性能等,这使得聚丙烯自问世以来,便迅速在机械、汽车、电子电器、建筑、纺织、包装、农林渔业和食品工业等众多领域得到广泛的开发应用。 [4] 近年来,随着我国包装、电子、汽车等工业的快速发展,极大地促进了我国工业的发展。 [5] 而且因为其具有可塑性,聚丙烯材料正逐步替代木制产品,高强度韧性和高耐磨性能已逐步取代金属的机械功能。 另外聚丙烯具有良好的接枝和复合功能,在混凝土、纺织、包装和农林渔业方面具有巨大的应用空间。
(1)填充改性
在PP成型过程中,将硅酸盐、碳酸钙、二氧化硅、纤维素、玻璃纤维等填料填充于聚合物中,达到PP耐热性提高、成本降低、刚性提高、成型收缩率降低等,但PP冲击强度、伸长率也会随之降低。玻璃纤维作为一种性能优异的无机非金属晶须,价格低、绝缘好、耐热强、抗腐好,机械强度高,应用比较普遍,经玻璃纤维填充改性的PP性能得到明显的改善,但是玻纤添加量达到30%左右时,材料的机械性能才能有明显的提高;添加量过大时会导致部分玻璃纤维得不到充分浸渍,使聚合物基体与玻璃纤维界面的结合性能变差,导致复合材料的力学强度下降,并且随着玻璃纤维添加量的增加复合材料的流动性能降低,导致PP成型加工工艺性能困难。
HMSPP在恒定应变速率下,熔体流动的应力开始呈现逐渐增加,然后成指数级增加,表现出明显的应变硬化行为。发生应变时,普通聚丙烯的拉伸粘度随即下降,而HMSPP则保持稳定。HMSPP的应变硬化能力可以保证其在成型拉伸时,保持均匀变形,而普通PP在受到拉伸时总是从结构中最薄弱的或最热的地方开始变形,导致制品种种缺陷,甚至不能成型。
农业、渔业及食品工业
聚丙烯可用于制作温室气蓬、地膜、培养瓶、农具、鱼网等,制作食品周转箱、食品袋、饮料包装瓶等。与废旧PET(聚对苯二甲酸乙二酯)反应性共混制成多功能废旧PET,将多功能废旧PET与聚丙烯原位成纤复合制成的原位成纤复合材料。该复合材料具有废旧PET形成异形微纤、废旧PET微纤与PP基体树脂间形成适度柔性强结合的界面等结构特征,废旧PET与PP复合制备的原位成纤复合材料的韧性刚性均比PP明显提高,力学性能的重现性相当好。将我国每年大量产生的废弃物即废旧PET资源化,具有显著的经济和社会效益。
增强改性
纤维状材料加入到塑料中,可以显著提高塑料材料的强度,故称之为增强改性。大径厚比的材料可以显著提高塑料材料的弯曲模量(刚性),也可以将其称之为增强改性。 [11]
PP(聚丙烯)的增强改性中应用的增强材料主要是玻璃纤维及其制品,此外还有碳纤维、有机纤维、硼纤维、晶须等。玻璃纤维增强PP中,用得较多的玻璃纤维为无碱玻璃纤维和中碱玻璃纤维,其中无碱玻璃纤维的用量最大。玻纤的直径控制在6~15μm范围内,玻纤的长度必须保证在0.25~0.76mm,这样既能够保证制品性能,又能使玻纤分散良好。一般认为制品中的玻纤长度大于0.2 mm时才有改性效果。玻纤含量(质量分数)在10%~30%为佳,超过40%时性能下降。另外,添加有机硅烷类偶联剂能使玻璃纤维和PP两者形成良好界面,提高复合体系的弯曲模量、硬度、负荷变形温度,特别是尺寸稳定性。 [
由于玻纤增强PP可以提高机械强度和耐热性,且玻纤增强PP的耐水蒸汽性、耐化学腐蚀性和耐蠕变性都很好,在许多场合可以作为工程塑料使用,如风扇叶片、暖风机格栅、叶轮泵、灯罩、电炉和加热器外壳等等。
HMSPP是一种树脂含有长支链的聚丙烯,长支链是在后聚合中引发接枝的,这种均聚物的熔体强度是具有相似流动特性普通聚丙烯均聚物的9倍,在密度和熔体流动速率相近的情况下,HMSPP的屈服强度、弯曲模量以及热变形温度和熔点均高于普通聚丙烯,但缺口冲击强度比普通聚丙烯低。
HMSPP的另外一个特点是具有较高的结晶温度和较短的结晶时间,从而允许热成型制件可以在较高温度下脱模,以缩短成型周期,可以在普通热成型设备上制成较大拉伸比、薄壁的容器。
交联改性
交联改性主要是把线型或者是枝状的聚合物通过交联的方法改性成为网状结构的聚合物。PP(聚丙烯)交联改性可以使其力学性能、耐热性以及形态稳定性得到改善,成型周期缩短。聚丙烯交联改性主要方法有化学交联改性、辐射交联改性,它们主要区别在于交联机理不同、活性源不同;化学交联改性是通过添加交联助剂来实现聚丙烯改性,辐射交联改性主要是通过强辐射或强光来实现,由于辐射交联改性对PP厚度要求使得该法普及困难。目前硅烷接枝交联法由于其能够制备出性能优良的材料而发展迅速,硅烷接枝交联法生产的PP强度高、耐热性好、熔体强度高、化学稳定性强、耐腐蚀性能好。
填充改性
在PP成型过程中,将硅酸盐、碳酸钙、二氧化硅、纤维素、玻璃纤维等填料填充于聚合物中,达到PP耐热性提高、成本降低、刚性提高、成型收缩率降低等,但PP冲击强度、伸长率也会随之降低。玻璃纤维作为一种性能优异的无机非金属晶须,价格低、绝缘好、耐热强、抗腐好,机械强度高,应用比较普遍,经玻璃纤维填充改性的PP性能得到明显的改善,但是玻纤添加量达到30%左右时,材料的机械性能才能有明显的提高;添加量过大时会导致部分玻璃纤维得不到充分浸渍,使聚合物基体与玻璃纤维界面的结合性能变差,导致复合材料的力学强度下降,并且随着玻璃纤维添加量的增加复合材料的流动性能降低,导致PP成型加工工艺性能困难