在大数据时代来临之际,移动互联网面临的挑战有哪些?如何在大数据的背景下做到精细化运营?。
BI(BusinessIntelligence)即商业智能,越来越多的智能软件供应商推出可视化数据分析工具,应对企业业务人员的大数据分析需求。然而如果你觉得不是数据分析专业、没有挖掘算法基础就无法使用BI工具?NO,自助式分析工具已经让数据产品链条变得大众化。
想要系统的认知大数据,必须要全面而细致的分解它,我着手从三个层面来展开:
第一层面是理论
理论是认知的必经途径,也是被广泛认同和传播的基线。我会从大数据的特征定义理解行业对大数据 的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;从对大数据的现在和未来去洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术
技术是大数据价值体现的手段和前进的基石。我将分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践
实践是大数据的最终价值体现。我将分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
未来的大数据除了将更好的解决社会问题,商业营销问题,科学技术问题,还有一个可预见的趋势是以人为本的大数据方针。人才是地球的主宰,大部分的数据都与人类有关,要通过大数据解决人的问题,数据可视化是一门同时结合了科学,设计和艺术的复杂学科,其核心意义始终在于清晰的叙述和艺术化的呈现,这些需要依靠数据分析师和设计师的精心策划而不是只有炫酷的效果,最终达到帮助用户理解数据和做出决策的目标,才能发挥它巨大的价值和无限的潜力西安大数据分析系统平台搭建。
大数据应用的数据来源应该包括结构化数据,如各种数据库、各种结构化文件、消息队列和应用系统数据等,其次才是非结构化数据,又可以进一步细分为两部分,一是社交媒体,如Twitter、Facebook、博客等 产生的数据,包括用户点击的习惯/特点,发表的评论,评论的特点,网民之间的关系等,这些都构成了大数据来源。另外一部分数据,也是数据量比较大的数据, 就是机器设备以及传感器所产生的数据。以电信行业为例,CDR、呼叫记录,这些数据都属于原始传感器数据,主要来自路由器或者基站。此外,手机的置传感器,各种手持设备、门禁系统,摄像头、ATM机等,其数据量也非常巨大。
西安大数据分析系统平台搭建 有需要的朋友请咨询
深圳源中瑞科技有限公司
班先生